>

~

,' ’ :: : ; ; e ' . ' \;‘4 ‘-\ _x i
-+ " ESD-TR-86-278 . S i = bty
MTR 10090 - : B ‘ N T
4 .. August 1986 ? 8 et . N

Guldelmes for De31gmng
e User Interface Software

~ " - Sidney L. Smith~ i

b

~ = =" Jane N. Mosier

-

R J %
4 .,
N '\Pmpared for Deputy Commander for Deve{opment Plans . ik . _’ .
-and Support Systems, Electronic™ Systems Division; AFSC, * g i =
¥ U Umted States Alr Force Hanscom All‘ Force Base MassaqhuSetts s
=t - & « = <
: . - Appmved for publlc rvelease dlSlﬂbUllOn unllmlted T 0 el
S L o d : IR Y)
.\ & e Bedford, Massachusetts - ."

_

s

§. &

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definttely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as i any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

A 2T (it S T2

MICHAEL F. MERRIMAN, Lt, USAF ARTHUR G. DECELLES, Capt, USAF
Project Officer Program Manager
Requirements Analysis Computer Resource Management

Technology Program
FOR THE COMMANDER

ROBERT J. KENT
Director

Software Design Center
Deputy Commander for Development Plans
and Support Systems

AD|A MANE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

== R e R T P e |

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

a)
1

2s. SECURITY CLASSIFICATION AUTHORITY

I

2b. DECLASSIFICATION/DOWNGRAOING SCHEDULE

proved for public release;

%OISTRIBUTION/AVAILABILITY OF REPORT
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

MTR-10090 ESD-TR-86-278

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
(If applicable)

The MITRE Corporation

7s. NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City, State and ZIP Code)

Burlington Road
Bedford, MA 01730

7b. ADDRESS (City, State and ZIP Code)

8s. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL
ORGANIZATION (If appttcable)

Deputy Commander for (cont.) XRSE

F19628-86-C-0001

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER []

8¢c. ADORESS (City, State and ZIP Code)

Electronic Systems Division, AFSC
Hanscom AFB, MA 01731-5000

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Ctassification)
GUIDELINES FOR DESIGNING USER (continued)

PROGRAM PROJECT
ELEMENT NO. NO.
64740F 5220/5720

TASK
NO.

WORK UNIT
NO.

12, PERSONAL AUTHORI(S)
Smith, Sidney L., Mosier, Jane N.

13s. TYPE OF REPORT 13b. TIME COVERED
Final FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

1986 August 01

15. PAGE COUNT

488

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB. GR. Computer-Based Systems

Design Guidelines
Human Factors

Information Systems
User-System Interface

sponsorship.

19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

This report proposes 944 guidelines for designing software to support the user
interface to computer-based information systems.
functional areas: data entry, data display, sequence control, user guidance, data
transmission, and data protection. This report revises and extends previously
published guidelines, and is the final compilation under current Air Force

These design guidelines cover six

e e = —_j‘j

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNcLAsSIFIED/UNLIMITED (F same as reT. O pTic users O

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Diana F. Arimento

22b. TELEPHONE NUMBER
(Include Area Code)

(617)271-7454

22¢c. OFFICE SYMBOL

Mail Stop D230

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 1S OBSOLETE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

IINCTLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE

8a. Development Plans and Support Systems

11. INTERFACE SOFTWARE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

SUMMARY

This report offers guidelines for design of user interface software in six
functional areas: data entry, data display, sequence control, user guidance, data
transmission, and data protection. This report revises and extends previous
compilations of design guidelines (cf. Smith and Mosier, 1984a).

If you are a teacher, a student, a human factors practitioner or researcher,
these guidelines can serve as a starting point for the development and application
of expert knowledge. But that is not the primary objective of this compilation.
The guidelines are proposed here as a potential tool for designers of user interface
software.

If you are a system analyst, you can review these guidelines to establish design
requirements. If you are a software designer, you can consult these guidelines to
derive the specific design rules appropriate for your particular system application.
That translation from general guidelines to specific rules will help focus attention
on critical user interface design questions early in the design process.

If you are a manager responsible for user interface software design, you may
find in these guidelines a means to make the design process more efficient.
Guidelines can help establish rules for coordinating individual design
contributions, can help to make design decisions just once rather than leaving
them to be made over and over again by individual designers, can help to define
detailed design requirements and to evaluate user interface software in comparison
with those requirements.

The design of user interface software will often involve a considerable
investment of time and effort. Design guidelines can help ensure the value of that
investment.

i

ACKNOWLEDGMENT

This report was prepared by The MITRE Corporation. The work reported
here was sponsored by the Directorate of Computer Systems Engineering, Deputy
for Development Plans and Support Systems of the Electronic Systems Division
(ESD) of the United States Air Force Systems Command, Hanscom Air Force
Base, MA 01731. Continuing funding for this work was provided by the Air
Force Computer Resource Management Technology Program, Program Element
64740F, under ESD/MITRE Project 5220. Final publication of these guidelines
was funded under Project 5720.

The Computer Resource Management Technology Program supports
development and transition into active use of tools and techniques nceded to cope
with the explosive growth in Air Force systems that use computer resources. The
objectives of that Program are:

to provide for the transition to Air Force systems of computer system
developments in laboratories, industry, and academia;

to develop and apply software acquisition management techniques to
reduce life cycle costs;

to provide improved software design tools;
to address problems associated with computer security;

to develop advanced software engineering tools, techniques,
and systems;

to support the implementation of high-order programming languages;
to improve human engineering of computer systems; and

to develop and apply computer simulation techniques in support of
system acquisition,

v

TABLE OF CONTENTS

INTRODUCTION

SECTION | DATA ENTRY

Text

Tables

—_——
NN bW - O

1.6.1
1.6.2

1.
1.
1=

O 00 3

General
Position Designation
Direction Designation

Data Forms

Graphics

Plotting Data

Drawing.
Data Validation
Other Data Processing
Design Change

SECTION 2 DATA DISPLAY

200 General. ¢ eod e e s EoE e e
2.1 Text
22 DataForms.
2.3 Tables
2.4 Graphics 0L
2.4.1 Scaling
2.4.2 Scatterplots
2.4.3 Curves and Line Graphs
244 BarGraphs
2.4.5 Pie Charts
2.4.6 Pictures and Diagrams
2.4.7 Flowcharts
2.4.8 Maps and Situation Displays
2.5 Format
26 Coding.

Page

11

15
28
35
36
50
62
65
73
76

86

91

97
105
116
122
130
138
143
145
150
154
156
159
163
170

TABLE OF CONTENTS
(Continued)

Page

SECTION 2 DATA DISPLAY (Cont.)
2.7 Display Control 189
2.7.1 Selection 190
2.7.2 Framing 194
273 UpdateL201
2.7.4 Suppression 204
2.7.5 Window Overlays 205
2.8 Design Change 209
SECTION 3 SEQUENCE CONTROL 211
30 General. 217
3.1 Dialogue Type 227
3.1.1 Question and Answer. 228
3.1.2 Fomm Filling 229
3.1.3 Menu Selection 231
3.1.4 Function Keys 248
3.1.5 Command Language 253
3.1.6 Query Language 263
3.1.7 Natural Language 266
3.1.8 Graphic Interaction 267
3.2 Transaction Selection 271
3.3 Interrupt 277
3.4 Context Definition. 281
3.5 Error Management 284
3.6 Alarms.o 288
3.7 Design Change 290
SECTION 4 USER GUIDANCE 291
40 General. 297
4.1 Status Information 308
4.2 Routine Feedback 311
4.3 Error Feedback 316
44 JobAids 324
4.5 User Records 333
4.6 DesignChange 336

vi

TABLE OF CONTENTS
(Concluded)

SECTION 5 DATA TRANSMISSION

5.0
5.1
52
53
5.4
949
5.6

General.

Preparing Messages

Addressing Messag

€8l . o . e e e o e e .

Initiating Transmission

Controlling Transm

ission.

Receiving Messages

Design Change .

SECTION 6 DATA PROTECTION

6.0
6.1
6.2
6.3
6.4
6.5

REFERENCES

General.
User Identification
Data Access. . .
Data Entry/Change
Data Transmission
Design Change

GUIDELINE TITLES

GLOSSARY

INDEX

Vil

Page
337

341
345
349
355
360
363
369

371

377
384
388
391
398
400

401
419
437

445

INTRODUCTION

In designing computer-based information systems, special attention must be
given to software supporting the user interface. For the past several years,
guidelines for designing user interface software have been compiled as a
continuing effort sponsored by the Air Force Electronic Systems Division (ESD).
Five previous ESD reports have dealt with this subject (Smith, 1980; 1981a;
1982b; Smith and Aucella, 1983a; Smith and Mosicr, 1984a).

This present report revises and expands previously published material, and
proposes a comprehensive set of guidelines for design of user interface software
in computer-based information systems. Although a great many changes have
been made, much of the text and guidelines material in this report will seem
familiar to the readers of previous reports.

Different people will read this report for different reasons — teachers and
students, human factors practitioners and researchcrs, system analysts and software
designers, and their managers. Each reader will bring to the task a unique
background of experience and interests. Thus some introductory comments are
needed to help familiarize readers with the general problems of user interface
design and thc particular need for guidelincs to design user interface software.

For the skeptical reader, this introduction offers arguments in favor of
guidelines for user interface software design. For the enthusiast who may imagine
that guidelines can solve all design problems, this introduction will note some of
their limitations. For those readers who wish to apply design guidelines, this
introduction describes how the report is formatted, how the guidelines are
presented and annotated, and concludes with some recommendations for how the
guidelines should be used.

Information Systems

Computers today are used for a broad range of applications. User interface
design guidelines cannot be applied usefully in every casc. Some computers may
be embedded as components in larger systems, so that they communicate only
with other computers and not directly with human users. When there is no user
interface, then no user interface design guidelines are needed.

Some computers are designed as general tools which can bc adapted by skilled
users for whatever purpose they desire. The particular tasks for which a
general-purpose computer might be used are not defined in advance by the
designer. Instead, a user must provide exact instructions to program the computer
to perform any task at hand. The designer may try to ensure that the computer
can process appropriate programming languages. but otherwise is not concerned
with explicit design of a user interface.

Other computer systems are designed to help particular users perform specific
tasks. Such computer applications are referred to here as information systems.
Applications of information systems range from relatively simple data entry and
retrieval (e.g., airline reservations) through morc complex monitoring and control
tasks (inventory control. process control, air traffic control) to jobs requiring
long-term analysis and planning. Military command, control and communication
systems span that broad range of information system applications.

To the extent that information systcms support human users performing defined
tasks. careful design of the user-system interface will be needed to ensure effective
system operation. The guidelines proposed in this report are intended to improve
user interface design for such information systems.

Users of information systems interact with a computer in order to accomplish
information handling tasks nccessary to get their jobs done. Thcy differ in ability,
training and job experience. They may be keenly concemed with task
performance. but may have little knowledge of (or interest in) the computers
themselves. Design of the user-system interface must take account of those human
factors.

User-System Interface

What is the user-system interface? In common usage. the phrase is broadly
defined to include all aspects of system design that affect system use (Smith,
1982a). This report, however, is concemed more narrowly with the user interface
to computer-based information systems, i.e., with those aspects of system design
that influence a user’s participation in information handling tasks.

This report focuses even more narrowly on those design fcaturcs of the uscr
interface that are implemented via software (i.e., the design of computer program
logic) rather than hardware (the design of equipment). The guidelines proposcd
here are generally worded in terms of thc functions that a user must perform, and
the functional capabilities that a designer should providc, rather than the particular
physical devices that might be used to implement those functions. Thus a
particular guideline might deal with **pointing™ as a function, with no necessary
recommendation whether pointing should be accomplished via touch display or
lightpen or any other physical device.

It is obvious that software is not the only significant factor influencing uscr
performance. Other aspects of user interface design are clearly important,
including workstation design, physical display characteristics, keyboard layout,
environmental factors such as illumination and noise. the design of paper forms
and written documentation, user training courses, etc. To achieve a good uscr
interface design, all of those factors must be designed with carc. But designers
must look elsewhere for advice on those topics. They are not covered in this
report.

User Interface Software

The significant role of user interface software in system design poses a spccial
challenge to human factors practitioners, recognized early by Parsons:

. what sets data processing systems apart as a special breed? The function of
each switch button, the functional arrangement among the buttons, the size and
distribution of elements within a display are established not in the design of the
equipment but in how the computer is programmed. Of even more consequence,
the "design’ in the programs establishes the contents of processed data available to
the operator and the visual relationships among the data. In combination with or
in place of hardware, it can also establish the sequence of actions which the
operator must use and the feedback to the operator concerning those actions.

(1970, page 169)

Continuing concem for user interface software is suggested by phrases such as
“software psychology™ (ct. Shneiderman, 1980). But user interface design cannot
be the concern only of the psychologist or the human factors specialist. It is a
significant part of information system design that must engage the attention of
system developers, designers, and ultimately system users as well. Those who
look to the future of information systems predict that user interface design will
become a specialty area; designers trained in both computer science and human
factors will be employed to develop user interface software (Williges, 1984).

User interface software can represent a sizable investment of programming
effort during initial system development, and later when a system is upgraded. In
a recent survey (Smith and Mosier, 1984b), information system designers were
asked to estimate the percent of operational software devoted to implementing the
user interface. Overall, the average estimate was that user interface design
comprises 30 to 35 percent of operational software. Estimates for individual
systems ranged from 3 to 100 percent, reflecting the fact that some computer
systems require a much higher investment in user interface design than others,
depending upon their purpose.

Significance of the User Interface

The design of user interface software is not only expensive and time-
consuming, but it is also critical for effective system performance. To be sure,
users can sometimes compensate for poor design with extra effort. Probably no
stngle user interface design flaw, in itself, will cause system failure. But there ts
a limit to how well users can adapt to a poorly designed interface. As one
defictency ts added to another, the cumulative negative effects may eventually
result in system failure, poor performance. and/or user complaints.

Outright system failure can be seen in systems that are underused where use is
optional, or are abandoned entirely. There may be retention of (or reversion to)
manual data handling procedures, with little use of automated capabilities. When
a system fails in this way, the result is disrupted operation, wasted time, effort
and money, and failure to achieve the potential benefits of automated information
handling.

In a constrained environment, such as that of many military and commercial
information systems, users may have little choice but to make do with whatever
interface design is provided. There the symptoms of poor user interface design
may appear in degraded performance. Frequent and/or serious errors in data
handling may result from confusing user interface design. Tedious user procedures

may slow data processing, resulting in longer queues at the checkout counter, the
teller's window, the visa office, the truck dock. or any other workplace where the
potential benefits of computer support are outweighed by an unintended increase
in human effort.

In situations where degradation in system performance is not so easily
measured, symptoms of poor user interface design may appear as user complaints.
The system may be described as hard to learn, or clumsy. tiring and slow to use.
The users’ view of a system is conditioned chiefly by experience with its interface.
If the user interface is unsatisfactory, the users’ view of the system will be
negative regardless of any niceties of internal computer processing.

A convincing demonstration of design improvement has been reported by
Keister and Gallaway (1983). Those authors describe a data entry application in
which relatively simple improvements to user interface software — including
selection and formatting of displayed data, consistency in wording and procedures,
on-line user guidance, explicit error messages, re-entry rather than overtyping for
data change, elimination of abbreviations, etc. — resuited in significantly
improved system performance. Data entry was accomplished 25 percent faster,
and with 25 percent fewer errors. How can that kind of design improvement be
achieved in general practice?

Design Practice

It seems fair to characterize current user interface software design as art rather
than science, depending more upon individual judgment than systematic
application of knowledge (Ramsey and Atwood, 1979; 1980). As an arnt, user
interface design is best practiced by cxperts, by specialists experienced in the
human engineering of computer systems. But such experts are not always
available to help guide system development, and it is clear that they cannot
personally guide every step of design. What is needed is some way to embody
expert judgment in the form of explicit design guidelines.

For military information systems, Military Specification MIL-H-48655B
(1979) calls for a system development sequence starting with requirements
analysis, functional specification and verification before any software design
begins. The actual course of user interface software Gevelopment will sometimes
depart from that desired sequence. There may be no explicit attempt to determine
user interface requirements. Specifications may include only rudimentary
references to user interface design, with general statements that the system must
be “‘easy to use.” In the absence of effective guidance, both the design and
implementation of user interface software may become the responsibility of
programmers unfamiliar with operational requirements. Detection and correction
of design flaws may occur only after system prototyping, when software changes
are difficult to make.

Human engineering standards and design handbooks have in the past been of
little use to the software designer. The popular human factors design handbook
by Woodson (1981) is typical. Its nearly 1000 pages include only three pages of
general material on information processing, and there is no reference to computer
systems in its index.

MIL-STD-1472B (1974). for many years the major human engineering design
standard for military system procurement, was concemed almost exclusively with
hardware design and physical safety. In 1981, MIL-STD-1472 was published in a
revised “C" version. That version included nine pages dealing with user interface
software design, in a section titled *“Personnel-Computer Interface.” That material
was later expanded to 19 pages, titled **User-Computer Interface,” in a revision of
MIL-STD-1472C (1983). Thus a beginning has been made, but much more is
needed. The question is, what guidance can be offered for user interface software
design?

Design Guidelines

Until several years ago, there had been no serious attempt to integrate the
scattered papers, articles and technical reports that constitute the literature of
user-computer interaction. A first step was made, under sponsorship of the Office
of Naval Research (ONR), in compilation of an extensive bibliography on this
subject (Ramsey, Atwood and Kirshbaum, 1978). A significant follow-on effort
culminated in publication by Ramsey and Atwood (1979) of a comprehensive
summary of this literature.

In reviewing the literature, it is apparent that most published reports dealing
with the user-computer interface describe applications rather than design
principles. A popular early book on the design of user-computer dialogues offered
stimulating examples, covering a range of on-line applications, but was
disappointing in its failure to emphasize design principles (Martin, 1973). The
ONR bibliography cited above includes 564 items, but identifies only 17 as
offering design guidelines.

Although accepted principles for user interface design have not been available,
some work has been accomplished toward that end. As experience has been
gained in the use of on-line computer systems, some experts have attempted to set
forth principles (*guidelines,” “ground rules,” *rules of thumb™) for design of
the user-computer interface. If experts cannot yet assert tested principles for user
interface design, they might still offer sensible recommendations as a guide for
designers.

”oee

Military agencies are not the only organizations seeking guidelines for user
interface design. There is keen interest in this topic within industrial and
commercial organizations, and throughout the general community of people who
develop and use information systems. David Penniman, writing for the User
On-Line Interaction Group of the American Society for Information Sciences, has
cited the need for “an interim set of guidelines for user interface design based on
available literature and pending the development of better guidelines as our
knowledge increases™ (1979, page 2). Penniman goes on to remind us that interim
guidelines are better than no guidelines at all.

In a survey of people concerned with user interface design (Smith and Mosier,
1984b), respondents generally support Penniman’s activist position. Given a
choice between trying to develop a complete set of user interface guidelines now,
when many of them must be based on judgment rather than experimental data, or
else accepting only a partial set of guidelines based on evaluated research, most
respondents would go with judgment now.

It is clear, of course, that system developers cannot wait for future rcsearch
data in making present design decisions. To meet current needs, several in-house
handbooks have been published to guide user interface dcsign within particular
organizations (NASA, 1979; Galitz, 1980; Brown, Brown, Burkleo, Mangelsdorf,
Olsen, and Perkins, 1983: Sidorsky, Parrish, Gates, and Munger, 1984). These
in-house guidelines draw heavily from those in earlier publications, especially the
influential IBM report by Engel and Granda (1975), as modified by the authors’
own good judgment.

The ESD/MITRE compilation of user interface design guidelines over the
past several years has drawn from the work of our predecessors, and will help
support the work of others to follow. Each year our guidelincs compilation has
grown larger. In this present report there are 944 guidelines. This compilation
represents the most comprehensive guidance available for designing user interface
software, and for that reason this report is recommended as a basic reference for
developing information systems.

Guidelines Organization

In the numbered sections of this report, guidclines are organized within six
functional areas of user-system intcraction:

Number of
Section Functional Area Guidelines
1 Data Entry 199
2 Data Display 298
3 Sequence Control 184
4 User Guidance 110
S Data Transmission 83
6 Data Protection 70

Each section of guidelines covers a different functional area of user-system
interaction, although there is necessarily some overlap in topical coverage from
one section to another. Within each section, guidelines are grouped by specific
functions. Each function has its own numeric designator, as listed in the table of
contents for this report.

In adopting this functional organization, we havc established a broad
conceptual structure for dealing with the range of topics that must be considered
in user interface design. Such a conceptual structure is urgently needed to help
clarify discourse in this field.

Each section of the guidelines begins with an introductory discussion of design
issues relating to the general functional area. That discussion provides some
perspective for the guidelines that follow. The discussion concludes with brief
definitions of the various user interface functions covered in that section of the
guidelines, along with an internal table of contents for that section, which may
help to lead a reader directly to functions of immediate interest.

Function definitions are repeated in boxed format to begin the listing of
guidelines under each function. Those definitions should aid reader understanding

of the material, and the boxed format will provide a notable visual indicator that a
new series of guidelines has begun.

The guidelines themselves are numbered sequentially under each function, in
order to permit convenient referencing. Under any function there will usually be
guidelines pertaining to various subordinate topics. Each guideline has been given
a short title to indicate its particular subject matter. Sometimes one guideline may
introduce a new topic and then be followed by several closely related guidelines.
Each of those related guidelines has been marked with an arrow () next to its title.

Following its number and title, each guideline is stated as a single sentence.
Guidelines are worded as simply as possible. usually in general terms to permit
broad application, but sometimes with contingent phrasing intended to define a
more limited scope of application.

In many instances, a stated guideline will be illustrated by one or more
examples. When an example includes some sort of imagined computer output,
such as an error message, prompt, menu, etc., that output is printed here in a
different typeface: sample computer output.

There is no question that specific examples can help clarify a generally-worded
guideline. Sometimes a reader will say, *“I didn't really understand the guideline
until I saw the example.” But there is a potential hazard in examples. Because
any example must be narrowly specific. a reader who relies on that example may
interpret the guideline as having a narrower meaning than was intended. It is
important to emphasize that examples are presented here only to illustrate the
guidelines, and are not intended to limit the interpretation of guidelines.

Where the validity of a guideline is contingent upon special circumnstances,
examples may be followed by noted exceptions. Those exceptions are intended
to lirnit the interpretation of a guideline.

Where further clarification of a guideline seems needed. examples and noted
exceptions are followed by supplementary comments. Those comments may
explain the reasoning behind a guideline, or suggest possible ways to interpret a
guideline, or perhaps note relations between one guideline and another.

Where a guideline has been derived from or is related in some way to other
published reports, a reference note may be added citing author(s) and date.
Complete citations for those references are listed following Section 6 of the
guidelines. Where a guideline corresponds with other published design standards
or guidelines, which is often the case, reference citations are given by letter codes.
Those codes are explained in the reference list.

Where a guideline is specifically related to guidelines in other sections.
appropriate cross references are given. Those cross references permit an interested
reader to explore how a particular topic is dealt with in different sections of the
guidelines.

Toward the back of this report, following the guidelines is the reference list.
Following the reference list is a glossary. The glossary defines word usage in the
guidelines, for those words that are used here differently or more narrowly than in
the general literature on user interface design. There is no question that we need
more consistent terminology in this field.

Following the glossary is a list of the titles for all 944 guidelines, which may
help a reader who is trying to find guidelines that pertain to a particular topic.

Following the list of guideline titles, and concluding this report, is a topical
index of the guidelines material. That index is intended to help readers find
guidelines on a particular subject, indcpendently of the functional organization
that has been imposed on the guidelines material.

These notes on organization and format should scrve to allow a student of the
subject to skim the guidelines material and find information on different topics.
For those readers who seek to apply the guidelines in software design, some
further comments are needed.

Applying the Guidelines

Not all of the guidelines proposed here can be applied in designing any
particular system. For any particular system application, some of the guidelines
will be relevant and some will not. In a recent survey of guidelines application
(Mosier and Smith, 1986). respondents indicated that they actually applied only
40 percent of the guidelines published in a previous report.

There is another problem to consider. Design guidelines such as those
proposed here must be generally worded so that they might apply to many different
system applications. Thus generally-worded guidelines must be translated into
specific design rules before they can actually be applied.

The process of selecting relevant guidelines for application and translating
them into specific design rules is referred to here as *“tailoring.” Who will do this
guidelines tailoring? It should be the joint responsibility of system analysts and
human factors specialists assessing design requirements, of software designcrs
assessing feasibility, and of their managers. It may also be helpful to include
representatives of the intended system users in this process, to ensure that
proposed design features will meet operational requirements. To simplify
discussion, we shall call all of these persons *“designers.”

As a first step in guidelines tailoring, a designer must review this report in
order to identify those guidelines that are relevant. For example, if an application
will require menus, then the 36 guidelines in Section 3.1.3 dealing with Mcnu
Selection are potentially relevant. For a large information system, the list of
relevant guidelines may be quite large.

Once all relevant guidelines have been identified, a designer must rcvicw
them and decide which ones actually to apply. There are two reasons why a
designer might not wish to apply all relcvant guidelines. First, for any given
application some guidelines may conflict, and the designer must therefore choose
which are more important. Second, budgetary and time restrictions may force the
designer to apply only the most important guidelines — those that promise to have
the greatest effect on system usability.

As noted above, because guidelines are intended for use on a variety of
systems they are worded in general terms. Before a guideline can actually be
applied it must be translated into specific design rules. For instance, a guideline
which states that displays should be consistently formatted might be translated

into design rules that specify where various display features should appear, such
as the display title, prompts and other user guidance, error messages, command
entries, etc.

Any guideline can have different possible translations. A guideline which
states that each display should be uniquely identified could be translated into a
design rule that display titles will be bolded and centered in the top line of the
display. Or it could be translated into a design rule that display titles will be
capitalized in the upper left corner of the display.

What would happen if guidelines were not translated into design rules, but
instead were given directly to interface designers? If designers do not decide as a
group what design rules will be used, then each designer will decide separately in
the course of applying guidelines. The result will surely be an inconsistent design.

After design rules have been specified for each selected guideline, those rules
should be documented for reference by software designers and others involved in
system development. Documentation of agreed rules, subject to periodic review
and revision as necessary, will help coordinate the design process. Documented
rules can then be applied consistently for a given application. With appropriate
modifications, rules adopted for one application might later be used for other
applications.

In the course of design, it may be determined that a particular design rule
cannot be used. Therefore, some means must be provided to deal with exceptions.
If a design rule is not appropriate for one particular display, then an exception can
be made by whoever has been appointed to make such decisions. But if a design
rule cannot be implemented at all, perhaps due to other design constraints, then
all designers for that particular system must be notified, and perhaps another
design rule must be substituted.

Finally, after the design is complete, it must be evaluated against the original
design requirements to ensure that all design rules have indeed been followed. To
help in the exception process and in the evaluation process, it may be useful to
assign different weights to the various rules, indicating which are more important
than others. Such weighting will help resolve the trade-offs that are an inevitable
part of the design process.

Role of Guidelines in System Development

If guidelines are applied in the way described here, there are some significant
implications for the role of guidelines in system development. Generally stated
guidelines should be offered to designers as a potential resource, rather than
imposed as a contractual design standard (Smith, 1986). It is only specifically
worded design rules that can be enforced, not guidelines.

Design rules can be derived from the guidelines material, but that conversion
from guidelines to rules should be performed as an integral part of the design
process, serving to focus attention on critical design issues and to establish specific
design requirements. Once agreed design rules are established, those rules can be
maintained and enforced by the managers of system development projects.

Specific design rules probably cannot be imposed effectively at the outset of
system development by some external agency — by a sponsoring organization or

by a marketing group. It is the process of establishing design rules that should
be imposed, rather than the rules themselves. A software design contractor might
reasonably be required to establish rules for the design of user interface software,
subject to review by the contracting agency. Available guidelines could be cited
as a potentially useful reference for that purpose.

Some other cautionary comments about the application of guidelines deserve
consideration here. Guidelines in themselves cannot assure good design for a
variety of reasons (Thimbleby, 1985). Guidelines cannot take the place of
experience. An experienced designer, one skilled in the art, might do well without
any guidelines. An inexperienced designer might do poorly even with guidelines.
Few designers will find time to read an entirc book of guidelines. If they do,
they will find it difficult to digest and remember all of the material. If guidelincs
and/or the rules derived from guidelines are to be helpful, they must be kept
continually available for ready reference.

Guidelines cannot take the place of expert design consultants, or at least not
entirely. A design expert will know more about a specific topic than can be
presented in the guidelines. An expert will know what questions to ask, as wcll
as many of the answers. An expert will know how to adapt generally-statcd
guidelines to the specific needs of a particular system dcsign application. An
expert will know how to trade off the competing demands of differcnt guidclincs,
in terms of operational requirements.

For maximum effectiveness, guideline tailoring must take place early in the
design process before any actual design of user interface software. In order to
tailor guidelines, designers must have a thorough understanding of task
requirements and user characteristics. Thus task analysis is a necessary
prerequisite of guidelines tailoring.

The result of guidelines application will be a design for user interface software
that may incorporate many good recommendations. Howevcr, even the most
careful design will require testing with actual users in order to confirm the value
of good features and discover what bad features may have been overlooked.

Thus prototype testing must follow initial design, followed in turn by possible
redesign and operational testing.

Indeed, testing is so essential for ensuring good design that some experts
advocate early creation of an operational prototype to evaluate interface design
concepts interactively with users, with iterative design changes to discover what
works best (Gould and Lewis, 1983). But prototyping is no substitute for careful
design. Prototyping will allow rapid change in a proposed interface: however,
unless the intial design is reasonably good, prototyping may not produce a usable
final design.

Considering the system development process overall, guidelines application
will not necessarily save work in user interface design, and in fact may entail
extra work, at least in the initial stage of establishing design rules. But guidelines
application should help produce a better user interface. Because guidelines are
based on what is known about good design, the resulting user intcrface is more
likely to be usable. Certainly the common application of design rules by all
designers working on a system should result in more consistent user interface
design. And the single objective on which experts agrce is design consistency.

10

SECTION 1

DATA ENTRY

Data entry refers to user actions involving input of data to a computer, and
computer responses to such inputs. The simplest kind of data entry consists
merely of pointing at something — selecting an item or designating a position on
a computer-generated display. In more complicated modes of data entry, a user
may have to control the format of data inputs as well as their contents. Thus
questions of format control in text cntry/editing and graphic interaction may
properly be considered questions of data entry.

Note, however, that user inputs which initiate or interrupt transactions — such
as command entries, or control entries selected from a displayed menu or by
function keys — pose rather diffcrent questions of design. Such control entrics
are discussed in Section 3 of these guidelines.

Data can be entered into a computer in a variety of different ways. Users
might designate position or direction by pointing at a display. Users might enter
numbers, letters, or morc extended textual material by keyed inputs, or in some
applications by spoken inputs. Data might be keyed into displayed forms or
tables, into constrained message formats, or as free text. In graphic interaction
users might draw pictures or manipulate displayed graphic elements. These
different types of data entry all mcrit consideration herc.

The computer will also play a role in the data entry process, guiding users
who need help. checking data entries to detect errors, and providing other kinds
of data processing aids. A designcr of user interface software must be concerned
about computer processing logic as well as data input by the user.

Data entry is heavily emphasized in clerical jobs, and many other jobs involve
data entry to some degree. Becausc data entry is so common, and because
inefficiencies caused by poorly designcd data entry transactions are so apparent,
many published recommendations for good user interface design deal with data
entry questions. Human factors specialists can probably give better advicc about
data entry than about any other functional area of user interface design.

Data entry requires hardware, and the proper dcsign of input devices has
received considerable attention, including concern for standardization of keyboard
layouts. Future advances in hardware design may well influence data entry tasks,
as suggested by current advocacy of voice input.

But the major need in today’s information systems is for improving the logic
of data entry, and it is there that design guidance should prove most helpful.
Thus the guidelines presented hcre deal with data entry functions, insofar as
possible, without regard to their hardware implementation.

The general objectives of designing data entry functions are to establish
consistency of data entry transactions, minimize input actions and memory load
on the user, ensure compatibility of data entry with data display, and provide
flexibility of user control of data entry. Stated in such general terms, these
principles do not provide helpful guidance to designers. Somehow these general
ideas must be converted into more specific guidelines.

DATA ENTRY

Introduction

The process of converting general principles into more detailed guidelines will
lead to a considerable proliferation of ideas. With regard to minimizing input
actions, one guideline might be that a user should not have to enter the same data
twice. Probably every designer knows that, even if it is sometimes forgotten. A
related guideline might be that a user should not have to enter data already entered
by another user. That seems to make good sense. although one could imagine
occasional exceptions when cross validation of data inputs is required.

How can duplicative data entry be avoided in practice? The solution lies in
designing the user interface (programming the computer) to maintain context.
Thus when a user identifies a data category of interest, say a squadron of aircraft,
the computer should be able to access all previously entered data relevant to that
squadron and not require the user to enter such data again.

In repetitive data entry transactions the user should have some means of
establishing context. One method is to allow users to define default entries for
selected data items, in cffect telling the computer that those items will stay the
same until the default value is changed or removed. If a user enters one item of
data about a particular squadron, it should be possible to enter other items
thereafter without having to re-identify that squadron.

Context should also be preserved to speed correction of input errors. One
significant advantage of on-line data entry is the opportunity for immediate
computer validation of user inputs, with timely feedback so that a user can correct
errors while the data are still fresh in mind and while documented source data are
still at hand. Here the computer should preserve the context of each data entry
transaction, saving correct items so that the user does not have to enter those again
while changing incorrect items.

Preservation of context is, of course, important in all aspects of user-system
interaction, with implications for data display, sequence control and user guidance,
as well as for data entry. The importance of context is emphasized again in the
discussion of those other functional areas.

Another important design concept is flexibility. It is easy to say that the
interface should adapt flexibly to user needs, but the specific means of achieving
such flexibility must be spelled out in design guidelines. For data entry functions
it is important that the pacing of inputs be controlled flexibly by the user. Tasks
where the pacing of user inputs is set by a machine are stressful and error-prone.

Aside from flexibility in pacing, users will often benefit from having some
flexible choice in the ordering of inputs. What is needed for interface design is
some sort of suspense file to permit flexible ordering of data entries, including
temporary omission of unknown items, backup to correct mistaken entries,
cancellation of incomplete transactions, etc.

As noted above, users may also benefit from flexibility ir defining default
options to simplify data entry during a sequence of transactions. Some systems
include only those defaults anticipated by the designers, which may not prove
helpful to the user in a particular instance. Thus the concept of flexibility is
related to maintaining context, and is related also to many other aspects of
interface design.

DATA ENTRY

Introduction

The guidelines proposed hLere deal with data entry in terms of specific
functions, covering different kinds of data entry and different kinds of computer
processing support. Some topics, such as “‘abbreviation”, which pertain to all
data entry are covered in an initial group of guidelines dealing generally with the
subject. A summary of the functional coverage in this section is presented on the
next page. These guidelines recommend specific ways to accomplish the
fundamental design objectives for data entry.

Objectives:
Consistency of data entry transactions
Minimal entry actions by user
Minimal memory load on user
Compatibility of data entry with data display

Flexibility for user control of data entry

13

DATA ENTRY

Functions
Page

1.0 Data entry refers to user actions involving input of data 15
to a computer, and computer responses to such inputs.

1.1 Position designation refers to user selection and entry 28
of a position on a display, or of a displayed item.

1.2 Direction designation refers to user entry of directional 35
data (azimuth, bearing, heading, etc.) on a display.

1.3 Text entry refers to the initial entry and subsequent 36
editing of textual matenal, including messages.

1.4 Data forms permit entry of predefined items into labeled 50
fields of specially formatted displays.

1.5 Tables pecrmit data entry and display in row-column format, 62
facilitating comparison of related data sets.

1.6 Graphics permit entry of data specially formatted to show 65
spatial, temporal, or other relations among data sets.
1.6.1 Plottingdata 73
1.6.2 Drawing 76

1.7 Data validation refers to checking entries for correct 84
content and/or format, as defined by software logic.

1.8 Other data processing aids may be provided to facilitate 86
data entry.

1.9 Design change of software supporting data entry functions 90

may be needed to meet changing operational requirements.

14

DATA ENTRY
General 1.0

Data entry refers to user actions involving
input of data to a computer, and computer
responses to such inputs.

Data Entered Only Once o]

Ensure that a user need enter any particular data only once,
and that the computer can access those data if needed
thereafter for the same task or for different tasks.

COMMENT: In effect, this recommendation urges integrated and
flexiblc software design so that different programs can acccss
previously entered data as needed. Requiring re-entry of data
would impose duplicative effort on users and increase the
possibility of entry errors.

SEE ALSO: |.8¢9,

Entry via Primary Display o2

When data entry is a significant part of a user’s task, entered
data should appear on the user’s primary display.

EXAMPLE: As a negative example, entry via typewriter is
acceptable only if the typewriter itself, under computer control, is
the primary display medium.

COMMENT: When the primary display is basically formatted for
other purposes, such as a graphic display for proccss control, a
separate window on thc display may have to be reserved for data
entry.

Feedback During Data Entry o3

Provide displayed feedback for all user actions during data
entry; display keyed entries stroke by stroke.

EXCEPTION: For reasons of data protection, it may not bc
desirable to display passwords and other secure entries.
REFERENCE: EG 6.3.7; MS 5.15.2.1.2, 5.15.2.2.3.

SEE ALSO: 3.0¢[4, 4.2¢1}.

15

1.0

DATA ENTRY

General

o4

> Fast Response

Ensure that the computer will acknowledge data entry actions
rapidly, so that users are not slowed or paced by delays in
computer response; for normal operation, delays in displayed
feedback should not exceed 0.2 seconds.

EXAMPLE: A key press should be followed by secemingly
immediate display of its associated symbol, or by some other
appropriate display change.

COMMENT: This reeommendation is intended to ensure efficient
.operation in routine, repetitive data entry tasks. Longer delays
may be tolerable in special circumstances. perhaps to reduce
variability in computer response, or perhaps in cases where data
entry comprises a relatively small portion of the user’s task.

COMMENT: Note that this guideline refers to acknowledgment,
rather than final proeessing of entries which may be deferred
pending an explicit ENTER action.

REFERENCE: EG Table 2.
SEE ALSO: 3.0¢18, 3.0e19.

Single Method for Entering Data

Design the data entry transactions and associated displays so
that a user can stay with one method of entry, and not have to
shift to another.

EXAMPLE: Minimize shifts from lightpen to keyboard entry and
then back again.

EXAMPLE: As a negative example, a user should not have to

shift from one keyboard to another, or move from one work
station to another, to accomplish different data entry tasks.

COMMENT: This, like other guidelines here, assumes a
task-oriented user, busy or even overloaded. who needs efficiency
of data entry.

REFERENCE: BB 2.11; EG 6.1.1; Foley and Wallace, 1974;
Shneiderman, 1982.

SEE ALSO: 1.1e14.

16

DATA ENTRY
General 1.0

Defined Display Areas for Data Entry *6

Where data entry on an electronic display is permitted only in
certain areas, as in form filling, provide clear visual definition
of the entry fields.

EXAMPLE: Data entry fields might be underlined, or perhaps
highlighted by reverse video.

EXCEPTION: For general text entry of variable (unrestricted)
length, no field delimiters are nceded. In effect, keyed text
entries can replace nothing (null characters).

COMMENT: Display formats with field delimiters provide explicit
user guidance as to the location and extent of data cntry fields.
Where delimiters extend throughout an entry field, as in
underlining, then any keyed data entries should replace the
delimiter characters on the display.

REFERENCE: BB 2.2.1.
SEE ALSO: 1.410,

Consistent Method for Data Change o7

In keyed data entry, always allow users to change previous
entries if necessary (including displayed default values) by
delete and insert actions; if data change is sometimes made by
direct character substitution (“typeover™), then that option
should also be consistently available.

EXAMPLE: Form filling may require typeover to replacc displayed
characters such as underscorcs that act as field delimiters.

COMMENT: Text editing on an electronic display can be handled
with or without typeover: there seems to be no published research
on the relative efficiency of user performance under these two
conditions.

COMMENT: Using typeover, there is some risk of user confusion
in replacement of an old value with a new one, during the
transitional period when the item being changed is seen as a
composite beginning with the new value and ending with the
old. Some designers do not permit ovcrtyping for that reason.

COMMENT: In some applications it may help the user to key a
new entry directly above or below display of the prior entry it
will replace, if that is done consistently. Here the user can
compare values before confirming entry of the new data and
deletion of the old.

REFERENCE: BB 2.10; Keister and Gallaway, 1983.

17

1.0

DATA ENTRY

General

o8

*9

°10

User-Paced Data Entry

Allow users to pace their data entry, rather than having the
pace being controlled by computer processing or external
events.

COMMENT: The timing of user-paced data entry will fluctuate
depending upon a user's momentary needs, attention span and
time available. At maximum speed, user-paced performanee is
more aeeurate than that achieved by machine pacing.

COMMENT: When user paeing does not seem feasible, as in somc
real-time process control applieations, reeconsider the general
approach to task allocation and interface design.

REFERENCE: MS 5.15.2.1.1; Bertelson, Boons and Renkin, 1965.

Explicit ENTER Action

Always require a user to take an explicit ENTER action to
initiate processing of entered data; do not initiate processing
as a side effect of some other action.

EXAMPLE: As a negative example, returning to a mecnu of eontrol
options should not by itself result in eomputer proeessing of data
just keyed onto a display.

EXCEPTION: In rouline, repetitive data entry transaetions,
sueeessful eompletion of one entry may automatieally lead to
iniliation of 1he nexl, as in keying ZIP codes al an aulomaled
post office.

COMMENT: Deferring processing until afier an cxplicit ENTER
action will permit a user to review data and correct errors before
computer proeessing, particularly helpful when data eniry is
eomplex and/or diffieult to reverse.

REFERENCE: MS 5.15.2.1.4.
SEE ALSO: 1.4e1 |.4¢2 3.0e5, 4.002, 6.009, 6.3e5.

» ENTER Key Labeling

Label an ENTER key explicitly to indicate its function.

EXAMPLE: As a negative example, thc ENTER key should not
be labeled in terms of mechanism, such as CR or RETURN or
XMIT.

COMMENT: For a noviee eomputer user, the label should perhaps
be even more explicit, such as ENTER DATA. Idcally, onc
eonsistent ENTER label would be adopted for all systems and so
become familiar to all users.

COMMENT: Some other label might scrve as well. if it were used
consistently. In some currcnt systems thc ENTER key is labeled
GO or DO, implying a generalized eommand to thc computcr,
“Go off and do it.”

REFERENCE: PR 3.3.9.
SEE ALSO: 3.0¢16, 4.010.

18

DATA ENTRY
General 1.0

Explicit CANCEL Action el1

Require a user to take an explicit action in order to cancel a
data entry; data cancellation should not be accomplished as a
side effect of some other action.

EXAMPLE: As a negative example, casual interruptions of a data
entry sequence, such as paging through forms, or detouring to
HELP displays, should not have the effect ot erasing partially
completed data entries.

COMMENT: If a requested sequence control action implies a more
definite interruption, such as a LOG-OFF command, or a
command to return to a menu display, then the user should be
asked to confirm that action and alerted to the loss of any data
entries that would result.

SEE ALSO: Section 3.3.

Feedback for Completion of Data Entry °12

Ensure that the computer will acknowledge completion of a
data entry transaction with a confirmation message, if data
entry was successful, or else with an error message.

EXCEPTION: In a sequence of routine, repetitive data entry
transactions, successful completion of one entry might result
simply in regeneration of the initial (empty) data entry display, in
order to speed the next entry in the sequence.

COMMENT: Successful data entry should not be signaled merely
by automatic erasure of entered data from the display, except
possibly in the case of repetitive data entries. For single data
entry transactions, it may be better to leave entered data on the
display until the user takes an explicit action to clear the display.

REFERENCE: MS 5.15.5.4.
SEE ALSO: 1.0e3, 3.0014, 4.2¢],

19

1.0

DATA ENTRY

General

*13

°l4

°15

» Feedback for Repetitive Data Entries

For a repetitive data entry task that is accomplished as a
continuing series of transactions, indicate successful entry by
regenerating the data entry display, automatically removing
the just-entered data in preparation for the next entry.

COMMENT: Automatic erasure of entcred data represents an
exception to the general prineiplc of control by explieit uscr
action. The interfacc designer may adopt this approach, in the
interests of cfficiency, for data cntry transactions that task analysis
indicates will be performed repetitively.

COMMENT: In addition to erasure of entered data, a mcssage
eonfirming suceessful data entry might be displayed. Such a
message may reassure uncertain users, espeeially in systcm
applications where computer performance is unreliablc.

REFERENCE: EG 4.2.10,
SEE ALSO: 1.0e3, 3.0014, 4 2],

» Feedback when Changing Data

If a user requests change (or deletion) of a data item that is
not currently being displayed, offer the user the option of
displaying the old value before confirming the change.

EXCEPTION: Expert users may sometimes wish to implement data
changes withoul displayed feedback, as in global replace
transactions, aceepting the attendant risk.

COMMENT: Displayed feedback will help preveni inadverteni
data change. and is partieularly useful in proteeting dclctc
actions. Like other recommendations intended to reduce crror, it
assumes that accuracy of data entry is worth cxtra effort by the
user. For some tasks, that may not be truc.

SEE ALSO: 6.3¢]6.

Keeping Data Items Short

For coded data, numbers, etc., keep data entries short, so that
the length of an individual item will not exceed 5-7 characters.

EXAMPLE: Coded data may include such itcms as badge numbcrs,
payroll numbers, mail stops, cquipment and part numbers, ete.

COMMENT: For coded data, lengihy ilems may exceed a user’s
memory span, inducing errors in both data entry and data
review.The nine-digit ZIP codes proposed by the US Postal
Service will prove difficult to remember accurately.

COMMENT: Proper names, meaningful words, and other textual
material are not coded data. Such items can be remembered
more easily, and the length restriction rceommended here need

not apply.
REFERENCE: BB 1.5.2; EG 6.3.3.

20

DATA ENTRY

General 1.0

» Partitioning Long Data Items *16
When a long data item must be entered, it should be
partitioned into shorter symbol groups for both entry and
display.

EXAMPLE: A 10-digit tclcphonc numbcr can be entered as threc

groups, NNN-NNN-NNNN.

REFERENCE: BB 1.4.1; MS 5.15.3.1.7, 5.15.3.5.7, 5.15.3.5.8:

Wright, 1977.

SEE ALSO: 2.2°14,
Optional Abbreviation 17
Allow optional abbreviation of lengthy data items to minimize
data entry keying by expert users, when that can be done
without ambiguity.

COMMENT: Novice and/or occasional users may prefer to make

full-form entries, while experienccd users will learn and benefit

from appropriate abbreviations.

REFERENCE: BB 2.4.1; EG 6.3.5; MS 5.15.2.2.7.
> Distinctive Abbreviation *18
When defining abbreviations or other codes to shorten data
entry, choose them to be distinctive in order to avoid confusing
similarity with one another.

EXAMPLE: BOS vs. LAS is good; but LAX vs. LAS risks

confusion.

REFERENCE: BB 3.1; MS 5.15.2.1.10.
> Simple Abbreviation Rule 19

When defining abbreviations, follow some simple abbreviation
rule and ensure that users understand that rule.

EXAMPLE: Simplc truncation is probably the best rule when that
can be done without ambiguity.

COMMENT: When encoding abbreviations for data entry the user
must know what the rule is. Truncation provides novicc uscrs
with a straightforward and highly successful method for generating
abbreviations, and is a rule that can be easily explained.
Moreover, truncation works at least as well, and often bettcr

than, more complicated rules, such as word contraction with
omission of vowels.

COMMENT: Designers of military systcms may wish to consult
the relevant standard for abbreviations, MIL-STD-12D.

REFERENCE: Ehrenreich, 1985; Ehrenreich and Porcu, 1982;
Hirsh-Pasek, Nudelman and Schncidcr, 1982; Moses and
Ehrenreich, 1981.

21

1.0

DATA ENTRY

General

*20

o21

022

23

» Minimal Exceptions to Abbreviation Rule

Use special abbreviations (i.e., those not formed by consistent
rule) only when they are required for clarity.

COMMENT: Special abbreviations will sometimes be nceded to
distinguish between words whose abbreviations by rulc are
identical, or when abbreviation by rulc forms anothcr word, or
when the special abbreviation is already familiar to system users.If
more than 10 percent of abbreviations are special cases, consider
changing the abbreviation rule.

REFERENCE: Moses and Ehrenreich, 1981.

» Minimal Deviation from Abbreviation Rule

When an abbreviation must deviate from the consistent rule,
minimize the extent of deviation.

EXAMPLE: In abbreviation by truncation, letters in the truncated
form should be changed one at a time until a unique abbreviation
is achieved.

REFERENCE: Moses and Ehrenrcich, 1981.

» Fixed Abbreviation Length

Make abbreviations the same :ength, the shortest possible that
will ensure unique abbreviations.

COMMENT: Desirable length will depend upon the vocabulary
size of words to be abbreviated. For a vocabulary of 75 words,
4-letter abbreviations might suffice. For smaller vocabularies,
still shorter abbreviations might be used.

REFERENCE: Moses and Ehrenrcich, 1981.

» Clarifying Unrecognized Abbreviations

When the computer cannot recognize an abbreviated data
entry, question the user as necessary to resolve any ambiguity.

EXAMPLE: This may occur when a user enters a misremembered
abbreviation.

22

DATA ENTRY
General 1.0

Prompting Data Entry 24

Provide prompting for the required formats and acceptable
values for data entries.

EXAMPLE: (Good) Vehicle type:

c = Car
t = Truck
b = Bus

(Bad) Vehicle type: __

EXCEPTION: Prompting may not be needed by skilled users and
indeed may hinder rather than help their performanee in
situations where display output is slow (as with Teletype
displays); for such users prompting might be provided as an
optional aid.

COMMENT: Prompting is particularly needed for coded data
entries. Menu selection may be appropriate for that purpose,
because menu selection does not require the user to remember
codes but merely to choose among displayed alternatives. Other
methods of prompting inelude labeling data fields, sueh as

Vehicle type (c/t/b): __
and/or providing optional guidance displays.

REFERENCE: Gade, Fields, Maisano, Marshall, and Alderman,
1981 Seibel, 1972.

SEE ALSO: 1.4e5 4. 47 and Seetion 3.1.3.

Character Entry via Single Keystroke 025

Allow users to enter each character of a data item with a single
stroke of an appropriately labeled key.

EXAMPLE: As a negative example, when a keyboard is inlended
primarily for numerie input, with several letters grouped on each
key sueh as a telephone keypad, do not require a user to make
alphabetic entries by double keying.

COMMENT: Deviees that involve eomplex keying methods for
alphabetie entry (e.g., pressing more than one key, simultaneously
or sueeessively) require special user training and risk frequent
data entry errors.

COMMENT: When hardware limitations such as those of a
telephone keypad seem to requirc double keying of alphabetic
entries, try to limit data eodes so that only single-keyed (numerie)
entries are required. Altemnatively, consider providing software
to interrogate the user to resolve any ambiguities resulting from
single-keyed alphabetic entries.

REFERENCE: Butterbaugh and Rockwell, 1982; Smith and
Goodwin, 1971a.

23

DATA ENTRY
1.0 General

*26 » Minimal Shift Keying

Design data entry transactions to minimize the need for shift
keying.

COMMENT: Shift keying can be considered a form of double
keying, which imposes a demand for extra user attention.
Keyboard designers should put frequently used characters where
they can be casily keyed. Conversely, software designers should
avoid frequent use of characters requiring shift keying.

REFERENCE: EG 6.3.12.

27 Upper and Lower Case Equivalent

For coded data entry, treat upper and lower case letters as
equivalent.

COMMENT: For data codes, users find it difficult to remember
whether upper or lower case letters are required, and so the
software design should not try to make such a distinetion. For
text entry, however, conventional use of capitalized letters should
be maintained.

SEE ALSO: 1.3¢]10, 3.0e]2.

*28 Decimal Point Optional

Allow optional entry or omission of a decimal point at the end
of an integer as equivalent alternatives.

EXAMPLE: An entry of ~56.” should be processed as equivalent
to an entry of “56", and vice versa.

COMMENT: If a decimal point is required for data processing, the
computer should probably be programmed to append one as
needed. Most users will forget to do it.

REFERENCE: Keister and Gallaway. 1983.

29 Leading Zeros Optional

For general numeric data, allow optional entry or omission of
leading zeros as equivalent alternatives.

EXAMPLE: If a user enters 56" in a field that is four characters
long, the system should recognize that entry rather than requiring
an entry of “0056™.

EXCEPTION: Special cases may represent exceptions to this rule,
such as entry of serial numbers or other numenric identifiers.

REFERENCE: BB 2.2.3: EG 6.3.11.

24

DATA ENTRY
General 1.0

Single and Multiple Blanks Equivalent *30

Treat single and multiple blank characters as equivalent in
data entry; do not require users to count blanks.

COMMENT: Pcoplc cannot be relied upon to pay careful attention
to such details. The computer should handle them automatically,
c.g.. ensuring that two spaces follow cvcry period in text cntry
(if that is the desired convention), and spacing othcr data itcms in
aceord with whatever format has been dcfined.

SEE ALSO: 3.1.5¢17,

Aids for Entering Hierarchic Data 31

If a user must enter hierarchic data, where some items will be
subordinate to others, provide computer aids to help the user
specify relations in the hierarchic structure,

COMMENT: For simple data structurcs, question-and-answcer
dialogucs or form filling may suffiee to maintain nccessary data
relations. For more complex data struetures. such as thosc
involved in graphie data entry, special techniqucs may be needed
to help users specify the relations among data entries.

SEE ALSO: 1.6®18, 1.8¢12,

Speech Input 032

Consider spoken data input only when data entry cannot be
accomplished through more reliable methods such as keyed
entry or pointing.

EXAMPLE: Postal workers whosc hands are oecupied sorting
packages might speak ZIP codes into a speech recognition device
rather than keying entries.

COMMENT: Current specch recognition devices are not well
dcveloped and tend to be error prone. Thus there should be
some good reason for choosing speech inpul over more
conventional data entry methods. Speech input might be
appropriatc if a uscr eannot use his/her hands, perhaps becausc of
a physical handicap or because the user’s hands are necded to
accomplish other tasks. Speech input may also be appropriaic if
a user does not have access to a suitablc keyboard. as might be
the case if data wcre being entered by tclephone.

25

1.0

DATA ENTRY

General

33

34

*35

*36

» Limited Vocabulary for Speech Input

Structure the vocabulary used for spoken data entry so that
only a few options are needed for any transaction.

COMMENT: To increase the likclihood that a user’s valid entries
are correctly identified by the system. the user’s voeabulary should
be predictable. This does not necessarily mean that the
vocabulary must be small, though recognition systems that can
only accommodate small vocabularies are more prevalent and less
cxpensive. A vocabulary is predictable when a user’s choice of
inputs at any given time is small, so that the system will be more
likely to make a correct match in interpreting an entry.

» Phonetically Distinct Vocabulary for Speech Input

Ensure that the spoken entries needed for any transaction are
phonetically distinct from one another.

COMMENT: Words which arc casily distinguished by one speech
recognition system may be confused by another. Thus system
testing should be performed in order to determine what sounds a
particular system tends to confuse, and what sounds it can
distinguish reliably.

» Easy Error Correction for Speech Input

Provide feedback and simple error correction procedures for
speech input, so that when a spoken entry has not been
correctly recognized by the computer, the user can cancel that
entry and speak again,

COMMENT: Simple error correction is particularly important with
spoken data entry, since spcech recognition systems are prone to
crror except under carefully controlled conditions.

» Alternative Entries for Speech Input

When speech input is the only form of data entry available.
allow alternatives for critical entries, so that if the system
cannot recognize an entry after repeated attempts another entry
can be substituted.

EXAMPLE: “Exit™ might be defined as an acceptable substitute
for “Finished™.

COMMENT: Becausc speech recognition systems are affected by
normal variations in a user's voice, and by changes in the acoustic
environment, a spoken entry that was accepted yesterday might
not be accepted today. Thus for important entries a user should
be able to use an alternative word.

COMMENT: Spelling a word letter-by-letter is not an acceptable
alternative, since specch recognition systems may have trouble
correctly identifying similar sounding letters.

26

DATA ENTRY
General 1.0

» PAUSE and CONTINUE Options for Speech Input *37

Provide PAUSE and CONTINUE options for speech input, so
that a user can stop speaking without having to log off the
system.

EXAMPLE: A user may wish to stop spcaking data for a time in
order to answer a telephone, or to speak with a fellow worker.
Users should not have to log off the system every time they wish
to say something that is not intended s an entry.

SEE ALSO: 3.38, 3.3e9,

27

1.1

DATA ENTRY

Position Designation

o]

3

Position designation refers to user selection
and entry of a position on a display, or of a
displaved item.

Distinctive Cursor

For position designation on an electronic display, provide a
movable cursor with distinctive visual features (shape, blink,
etc.).

EXCEPTION: When position designation involves only selcction
among displayed alternatives, highlighting selected ilcmis mighi
be used instead of a scparately displaycd cursor.

COMMENT: When choosing a cursor shape, consider the general
content of the display. For instance, an undcrscore cursor would
be difficult to see on a display of underscored text, or on a
graphical display containing many other lines.

COMMENT: If the cursor is changed to denote diffcrent functions
(c.g., to signal dcletion rather than entry), then cach different
cursor should be distinguishable from the others.

COMMENT: If multiple cursors arc uscd on the same display
(c.g.. onc for alphanumeric entry and one for line drawing). then
each cursor should be distinguishable from the others.

REFERENCE: Whitfield, Ball and Bird, 1983.
SEE ALSO: 1.1¢17, 4.009,

» Nonobscuring Cursor

Design the cursor so that it does not obscure any other
character displayed in the position designated by the cursor.

EXAMPLE: A block cursor might cmploy brightness inversion
(“‘reverse video™) to show any other character that it may be
marking.

» Precise Pointing

When fine accuracy of positioning is required, as in some
forms of graphic interaction, design the displayed cursor to
include a point designation feature.

EXAMPLE: A cross may suffice (like cross-hairs in a 1clescope),
or perhaps a notched or V-shaped symbol (like a gun sight).

COMMENT: Precise pointing will also rcquire a cursor control
device capable of precise manipulation. Touch displays. for
example, will not pcrmit precise pointing.

REFERENCE: MS 5.15.2.1.8.2: Whitfield. Ball and Bird, 1983.

28

DATA ENTRY

Position Designation 1.1

Explicit Activation 4
Require users to take a separate, explicit action, distinct from
cursor positioning, for the actual entry (enabling, activation)
of a designated position.

EXCEPTION: For line drawing or tracking tasks the need for rapid,

continuous entry may override the need to reduce entry errors.

REFERENCE: MS 5.15.2.5.4; Albert, 1982; Foley and Wallace,

1974; Whitfield, Ball and Bird, 1983.

SEE ALSO: 1.6%4, 3.1.3¢6.
Fast Acknowledgement of Entry o5
Ensure that the computer will acknowledge entry of a
designated position within 0.2 seconds.

EXAMPLE: Almost any consistently provided display change will

suffice to acknowledge pointing actions, such as brightening or

flashing a seleeted character.

COMMENT: In some applications it may be desirable to provide

an explicit message indicating that a sclection has been made.

REFERENCE: EG Table 2; MS 5.15.8.

SEE ALSO: 1.003, 4.202 4.2¢]0.
Stable Cursor 6

Ensure that the displayed cursor will be stable, i.e., that it
will remain where it is placed until moved by the user (or by
the computer) to another position.

COMMENT: Some special applications, such as aided tracking,
may benefit from computer-controlled cursor movement. The
intent of the recommendation here is to avoid unwanted “drift™.

REFERENCE: EG 6.1.

29

1.1

DATA ENTRY

Position Designation

o7

o9

*10

Responsive Cursor Control

For arbitrary position designation, moving a cursor from one
position to another, design the cursor control to permit both
fast movement and accurate placement.

COMMENT: Ideally, when a user moves a pointing device the
displayed cursor should appear to move instantly. Rough
positioning should take no more than 0.5 seconds for full screen
traversal. Fine positioning may require incremental stepping of
the cursor, or a control device incorporating a large
control/display ratio for small displacements, or a selectable
vernicr mode of control use. For any given cursor control action,
the rate of eursor movement should be constant, i.e., should not
change with time.

COMMENT: Slow visual feedback of cursor movement can be
particularly irritating when a user is repeatedly pressing a cursor
control key. or perhaps holding the key down. In that case. slow
feedbaek will eause the user to misjudge location and move the
cursor too far.

Consistent Incremental Positioning

When cursor positioning is incremental by discrete steps,
design the step size of cursor movement to be consistent
horizontally (i.e., in both right and left directions), and
consistent vertically (in both up and down directions).

COMMENT: Horizontal and vertical sicp sizes need not be the
same. and in gencral will not be.

> Variable Step Size

When character size is variable, design the incremental cursor
positioning to vary correspondingly, with a step size matching
the size of currently selected characters.

> Proportional Spacing

If proportional spacing is used for displayed text, provide
computer logic to make necessary adjustments automatically
when the cursor is being positioned for data entry or data
change.

EXAMPLE: Automatie proportional spacing is useful for eursor
control when cditing text composed for 1ypesciling.
EXCEPTION: Manual override may help a user in special cases
where automatie spaeing is not wanted.

COMMENT: Without automatie computer aids. a uscr probably
will not handle proportional spacing accurately.

30

DATA ENTRY

Position Designation

1.1

Continuous Cursor Positioning

For continuous position designation, such as needed for line
drawing, provide a continuously operable control (e.g.,
joystick) rather than requiring a user to take incremental,
discrete key actions.

SEE ALSO: Section 1.6.2.

Direct Pointing

When position designation is the sole or primary means of
data entry, as in selection among displayed alternatives,
provide cursor placement by direct pointing (e.g., with a touch
display or lightpen) rather than incremental stepping or slewing
controls (e.g., keys, joystick, etc.).

REFERENCE: MS 5.15.2.5.1; Albert, 1982; Goodwin, 1975;
Shinar, Stcrn, Bubis and Ingram, 1985.

> Large Pointing Area for Option Selection

In selection of displayed alternatives. design the acceptable
area for pointing (i.e., cursor placement) to be as large as
consistently possible, including at least the area of the
displayed label plus a half-character distance around the label.

COMMENT: The larger the effective target arca, the casicr the
pointing action will be, and the less nisk of error in selecting the
wrong label by mistake. Some rescarchers have recommended a
target separation on the display of no less than 6 mm.

REFERENCE: BB 2.12; EG 2.3.13, 6.1.3; Whitficld. Ball and
Bird, 1983.

SEE ALSO: 3.1.3e5,

Cursor Control at Keyboard

When position designation is required in a task emphasizing
keyed data entry, provide cursor control by some device
integral to the keyboard (function keys, joystick, *“cat™, etc.).
COMMENT: Separatcly manipulated devices (lightpen. “mouse”™.
etc.) will tend to slow the user.
REFERENCE: Foley and Wallace, 1974.

SEE ALSO: 1.0e5,

el

*12

13

°14

31

DATA ENTRY

1.1 Position Designation
°15 Compatible Control of Cursor Movement
Ensure that control actions for cursor positioning are
compatible with movements of the displayed cursor, in tcrms
of control function and labeling,
EXAMPLE: For cursor control by key action, a key labeled with a
Icft-pointing arrow should move the cursor leftward on the
display: for cursor control by joystick, leftward movement of the
control (or Icftward pressure) should result in leftward movement
of the cursor; etc.
SEE ALSO: 3.0e16.
*16 Minimal Use of Multiple Cursors
Employ multiple cursors on a singlc display only when they
are justified by careful task analysis.
EXAMPLE: Multiple cursors might be useful to mark a user’s
place when manipulating data in multiple display windows.
EXAMPLE: In graphic interaction, one cursor might be used for
line drawing and a different cursor for alphanumeric data entry
(labels, etc.).
COMMENT: Multiple cursors may confuse a user. and so require
special consideration if advocated in USI design.
°17 » Distinctive Multiple Cursors
If multiple cursors are used, make them visually distinctive
from one another.
SEE ALSO: 1.1e].
°18 » Distinctive Control of Multiple Cursors
If multiple cursors are controlled by a single devicc, provide a
clear signal to the uscr to indicate which cursor is currently
under control.
°19 » Compatible Control of Multiple Cursors

If multiple cursors are controlled by different devices, ensure
that their separate controls are compatible in operation.

EXAMPLE: Assume that one cursor is moved upward on a display
by forward motion of a joystick. Then a second cursor should
also bc moved upward by forward motion — perhaps by forward
motion of a second joystick or by forward motion of a
thumbwheel or other device.

REFERENCE: Morrill and Davies, 1961.
SEE ALSO: 3.0e16.

32

DATA ENTRY

Position Designation 1.1

Consistent HOME Position *20
When there is a predefined HOME position for the cursor,
which is usually the case, define that position consistently on
all displays of a given type.

EXAMPLE: HOME might be in the upper left comer of a text

display, or at the first field in a form-filling display, or at the

center of a graphic display.

COMMENT: The HOME position of the cursor should also be

consistent in the different “windows™ or sections of a partitioned

display.

REFERENCE: MS 5.15.2.1.8.3.

SEE ALSO: 4.4¢]6.
Consistent Cursor Placement 21
On the initial appearance of a data entry display, ensure that
the cursor will appear automatically at some consistent and
useful location.

EXAMPLE: In a torm-filling display. the cursor should be placed

in the first entry field.

REFERENCE: BB 2.1.4; MS 5.15.4.3.6.

SEE ALSO: 1.4028, 4. 4e]6.
Easy Cursor Movement to Data Fields 22

If a cursor must be positioned sequentially in predefined areas,
such as displayed data entry fields, ensure that this can be
accomplished by simple user action.

EXAMPLE: Programmable tab keys are customarily used for this
purpose.

COMMENT: Automatic cursor advance is generally not desirable.
REFERENCE: MS 5.15.4.3.6.

SEE ALSO: 1.4¢26.

33

1.1

DATA ENTRY

Position Designation

23

24

Display Format Protection

When there are areas of a display in which data entries cannot
be made (blank spaces, protected field labels, etc.), make
those areas insensitive to pointing actions, i.e., prevent the
cursor from entering those areas.

EXCEPTION: When a user may have to modify display formats,
then this automatic format proteetion can be provided as a general
default option subject to user override.

COMMENT: Automatic format protection will generally make
cursor positioning easier for a user, since the cursor will not have
to be stepped through blank areas, and much routine cursor
control can be accomplished with only casual reference to the
display.

REFERENCE: BB 1.8.13: EG 7.5: MS 5.15.4.3.12; PR 3.3.2.
SEE ALSO: 1.4¢7, 2.0010, 6.2¢5.

Data Entry Independent of Cursor Placement

Ensure that an ENTER action for multiple data items results
in entry of all items, regardless of where the cursor is placed
on the display.

COMMENT: A user may choose to move the cursor back to correct
earlier data items, and may not move the cursor forward again.
The computer should ignore cursor placement in such cases.

SEE ALSO: 6.3¢7,

34

DATA ENTRY

Direction Designation

1.2

Direction designation refers to user entry of
directional data (azirmuth, bearing, heading,
etc.) on a display.

Analog Entry of Estimated Direction

When direction designation is based on graphic representation,
provide some analog means of entry, such as vector rotation
on the display and/or a suitably designed rotary switch.

EXAMPLE: A rotary switch might be used to indicate heading
estimations for displayed radar trails.

EXCEPTION: When approximate direction designation will suffice,
for just eight cardinal points, keyed entry can be used.

COMMENT: For matching the directional elements in a graphic
display, an entry device providing a visual analog will prove both
faster and more accurate.

REFERENCE: Smith, 1962a.

Keyed Entry of Quantified Direction

When designation of direction is based on already quantified
data, allow keyed entry.

EXAMPLE: A heading entry might be made from a verbal report
in which the direction has already been expressed numerically.

2

35

DATA ENTRY

1.3 Text
Text entry refers to the initial entry and
subsequent editing of textual material,
including messages.

o] Adequate Display Capacity

Ensure that display capacity, i.e., number of lines and line
length, is adequate to support efficient performance of text
entry/editing tasks.

EXAMPLE: For text editing where the page format of subsequent
printed output is eritical, the user’s terminal should be able to
display full pages of text in final output form. which might require
a display capacity of 50-60 lines or more.

EXAMPLE: For general text editing where a user might need to
make large changes in text, i.e., sometimes moving paragraphs
and sections, a display capacity of at least 20 lines should be
provided.

EXAMPLE. Where text editing will be limited to local changes.
i.c.. correcting typos and minor rewording, as few as seven lines
of text might be displayed.

COMMENT: A single line of displayed 1cxt should not be used for
text editing. During text editing. a user will nced to sce some
displayed context in order to locate and change various text
entries. Displaying only a small portion of 1ext will make a user
spend more time moving forward and back in a displayed
document to scc other parts, will increase load on the user’s
memory, and will cause users to make more errors.

REFERENCE: Elkerton, Williges, Pittman and Roach. 1982; Neal
and Damell, 1984.

SEE ALSO: 1.3e27.

36

DATA ENTRY
Text

1.3

Editing Capabilities During Text Entry

Allow users to do at least some simple editing during text
entry without having to invoke a separate edit mode.

EXAMPLE: While entering text, users will need at least some
capability for text seleetion (by eursor movement) and deletion.

COMMENT: The intent of this guideline is not to endorse modeless
over moded text editors. In fact. when experieneed users perform
editing tasks, a moded editor may offer some advantages.
However if a moded editor is provided. users should be able to
do some simple editing sueh as eorreeting typographieal errors
and making simple word changes without having to invoke that
editor.

COMMENT: When users will compose text on-line, eonsider
providing a modeless editor rather than a moded editor. Modeless
editors offer some advantages for text eomposition. when users
will frequently alternate between text entry and editing.

REFERENCE: Poller and Garter, 1984.
SEE ALSO: 2.0e9,

Free Cursor Movement

For text editing, allow users to move the cursor freely over a
displayed page of text to specify items for change, and to
make changes directly to the text.

COMMENT: Free cursor movement and changes made directly to
the text are charaeteristics usually associated with so-called
sereen-based editors and not assoeiated with line- or
command-based editors, Sereen-based editors are preferred by
users and are potentially more cfficient.

REFERENCE: MS 5.15.3.8.2: Gould. 1981: Roberts and Moran,
1983; Shneiderman, 1982.

SEE ALSO: 2.7.2e8.

*2

37

DATA ENTRY
1.3 Text

4 » Control Entries Distinct from Text

If control entries arc made by keying onto the display, such as
by keyed menu selections or commands, ensure that they will
be distinguishable from displayed text.

EXAMPLE: Keycd control cntries might be made only in a
rescrved window in the display.

COMMENT: The intent hcre is to help cnsure that a uscr will not
inadvertently enter controls as text. or vice versa. It a command
entry is keyed into the body of a text display, perhaps at the end
of the last sentence, then a user cannot be ccrtain whether the
computer will interpret the command as a text cntry or as a control
entry.

COMMENT: In applications where the sereen cannot display all
possible format features (e.g.. speeial fonts). format codes
representing thosc fcatures are usually displaycd within the text.
It is not practical in such cases to display format codes in a
separate window, sinee a displayed code must mark the text that
will be affected by the codc. These codcs should therefore be
highlighted in somc way to distinguish them from text.

COMMENT: One way of avoiding thc problem altogcther is to use
function keys rather than command entry to control text editing.
To provide a gencral range of text editing functions, howcver,
many keys will be nceded. A practical design approach might be
to adopt doublc-kcying logic for all kcys on a standard
(QWERTY) keyboard, whcre control-F means FILE a document,
control-G means GET a document, etc.. and providing appropriatc
extra labcls for those kcys.

SEE ALSO: 1.3926.

o5 Natural Units of Text

Allow users to specify segments of text in whatever units are
natural for entry/editing.

EXAMPLE: For unformatted (“frec’) tcxt, natural units will be
characters, words, phrases. sentcnces, paragraphs. and pages. for
specially formatted text, such as computer program listings, allow
specification of other logical units, including lincs, subscctions,
sections, ete.

38

DATA ENTRY
Text 1.3

» Control Entry Based on Units of Text 6

Allow users to specify units of text as modifters for control
entries.

EXAMPLE: Consider two altemative eontrol sequenecs 1o delete
a four-character word:

(Good) DELETE WORD
(Bad) DELETE DELETE DELETE DELETE

COMMENT: Control entries. whether aceomplished by function
key, menu selection, or eommand entry. will be casier and more
powerful when a user can specify text in natural units, rather than
having to repeat an entry for each text character.

COMMENT: When units of text are modifiers for all eontrol
entries, the syntax for those control entries will be easier to
learn. Whether a control aetion is to MOVE or to DELETE, the
modifiers to specify text are the same.

REFERENCE: MS §5.15.3.8.4.1, 5.15.3.8.4.2.
SEE ALSO: 3.006, 4.0e].

» Highlighting Specified Text o7

When text has becen specificd to become the subject of control
entries, highlight that segment of text in some way to indicate
its boundaries.

COMMENT: Text may be speeified for various purposes — for
underlining or bolding. moving, copying. or deleting.
Highlighting provides the user with direct feedback on the extent
and content of specified text. reducing the likelihood of
specification errors.

SEE ALSO: 4.2¢]0.

» Cursor Movement by Units of Text o8

Allow users to move the cursor by specific units of text. as
well as one character at a time.

COMMENT: The time necessary to position a eursor is directly
related to the number of control aetions required. Incremental
eursor movement by charaeter will theretore be inefticient when
moving the cursor over large units of text.

COMMENT: Cursor positioning will be easier if appropriate
funetion keys can be provided. A SENTENCE key that allows a

user to move direetly to the next displayed sentenee will be more
convenient than some double-keying logie sueh as CONTROL-S.

SEE ALSO: 1.1e7.

39

1.3

DATA ENTRY

Text

*9

°10

el

String Search

Allow users to specify a string of text and request the
computer to advance (or back up) the cursor automatically to
the next (or last previous) occurrence of that string.

COMMENT: Novice users may prefer to move through a displayed
document by units of text, such as by word or paragraph. More
expericnced users, however, may sometimes wish to specify
cursor placcment dircetly. An automatic string search capability
will gencrally speed cursor placement in comparison with
incremental positioning, particularly when moving over large
portions of a document.

COMMENT: Expert users may wish to incorporate special
characters in string scarch, including format control characters
such as thosc for tabbing, bolding, etc.

REFERENCE: Elkerton, Williges, Pittman, and Roach. 1982.

» Upper and Lower Case Equivalent in Search

Unless otherwise specified by a user, treat upper and lower
case letters as equivalent in searching text.

EXAMPLE: “STRING™, “String™, and “string™ should all be
recognized/accepted by the computer when searching for that
word.

COMMENT: In searching for words. users will generally be
inditferent to any distinction between upper and lower case. The
computer should not compel a distinction that users do not care
about and may find difficult to make. In situations when case
actually is important, allow users to specify case as a sclectable
option in string scarch.

COMMENT: It may also be uscful tor the computer to ignore such
other features as bolding, underlining, parentheses and quotes
when searching text.

SEE ALSO: 1.0027, 3.0e]2.

» Specifying Case in Search

When case is important, allow users to specify case as a
selectable option in string search.

EXAMPLE: When scarching a document in which all the headings
are capitalized, a uscr might wish to find a string only when it
appears in a heading.

COMMENT: Users may also wish to specity features such as
bolding, underlining, and quotes when searching text.

40

DATA ENTRY
Text

1.3

» Global Search and Replace

When systematic editing changes will be made throughout a
long document, consider providing a *“‘global search and
replace” capability in which the computer will replace all
occurrences of one text string with another without requiring
the user to confirm each change.

COMMENT: Global scarch and replace could be designed in two
differcnt ways. One uscer might want the computer to make all
changes automatically. Another user might want to review and
confirm each change. Ideally, both options should be available.

» Case in Global Search and Replace

If a global search and replace capability is provided, ensure

that each time a string is replaced the case of the new string

matches the case of the old string, unless otherwise specified
by the user.

EXAMPLE: If a word is replacing the first word in a sentenee, the
first letter of the new word should be capitalized: i’ it is replacing
a word that is entirely in lower case. then the new word should
also be in lower case.

COMMENT: On occasion, however, a user might wish to replace
an erroneous lower-case word (“Mitre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>